Bioactive Compounds from Artichoke and Application Potential (2024)

1. Acquadro A, Barchi L, Portis E, Mangino G, Valentino D, Mauromicale G, et al.Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation.Sci Rep. 2017;7(1):5617. 10.1038/s41598-017-05085-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae.PLoS One. 2015;10(3):e0120589. 10.1371/journal.pone.0120589 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. De Falco B, Incerti G, Amato M, Lanzotti V. Artichoke: botanical, agronomical, phytochemical, and pharmacological overview.Phytochem Rev. 2015;14(6):993–1018. 10.1007/s11101-015-9428-y [CrossRef] [Google Scholar]

4. Gostin AI, Waisundara VY. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.).Trends Food Sci Technol. 2019;86:381–91. 10.1016/j.tifs.2019.02.015 [CrossRef] [Google Scholar]

5. Zayed A, Farag MA. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications.Lebensm Wiss Technol. 2020;132:109883. 10.1016/j.lwt.2020.109883 [CrossRef] [Google Scholar]

6. World food and agriculture - Statistical yearbook 2020. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2020. 10.4060/cb1329en 10.4060/cb1329en [CrossRef] [CrossRef]

7. Dabbou S, Dabbou S, Flamini G, Peiretti PG, Pandino G, Helal AN. Biochemical characterization and antioxidant activities of the edible part of globe artichoke cultivars grown in Tunisia. Int J Food Prop. 2017;20(sup1):S810–9. 10.1080/10942912.2017.1315131 10.1080/10942912.2017.1315131 [CrossRef] [CrossRef]

8. Pesce GR, Fernandes MC, Mauromicale G. Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis.Biomass Bioenergy. 2020;134:105471. 10.1016/j.biombioe.2020.105471 [CrossRef] [Google Scholar]

9. Pesce GR, Mauromicale G. Cynara cardunculus L.: Historical and economic importance, botanical descriptions, genetic resources and traditional uses. In: Portis E, Acquadro A, Lantieri S, editors. The globe Artichoke genome. Compendium of Plant Genomes. Cham, Switzerland: Springer; 2019. pp. 1–19. 10.1007/978-3-030-20012-1_1 10.1007/978-3-030-20012-1_1 [CrossRef] [CrossRef] [Google Scholar]

10. Lattanzio V, Kroon PA, Linsalata V, Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients.J Funct Foods. 2009;1(2):131–44. 10.1016/j.jff.2009.01.002 [CrossRef] [Google Scholar]

11. Pandino G, Lombardo S, Mauromicale G. Chemical and morphological characteristics of new clones and commercial varieties of globe artichoke (Cynara cardunculus var. scolymus).Plant Foods Hum Nutr. 2011;66(3):291–7. 10.1007/s11130-011-0247-z [PubMed] [CrossRef] [Google Scholar]

12. Durazzo A, Foddai MS, Temperini A, Azzini E, Venneria E, Lucarini M, et al.Antioxidant properties of seeds from lines of artichoke, cultivated cardoon and wild cardoon.Antioxidants. 2013;2(2):52–61. 10.3390/antiox2020052 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Petropoulos SA, Pereira C, Tzortzakis N, Barros L, Ferreira ICFR. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece.Front Plant Sci.2018;9:459. 10.3389/fpls.2018.00459 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Llorente BE, Brutti CB, Caffini NO. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.).J Agric Food Chem. 2004;52(26):8182–9. 10.1021/jf049006o [PubMed] [CrossRef] [Google Scholar]

15. Sidrach L, García-Cánovas F, Tudela J, Neptuno Rodríguez-López J. Purification of cynarases from artichoke (Cynara scolymus L.): Enzymatic properties of cynarase A.Phytochemistry. 2005;66(1):41–9. 10.1016/j.phytochem.2004.10.005 [PubMed] [CrossRef] [Google Scholar]

16. Ricceri J, Barbagallo RN. Role of protease and oxidase activities involved in some technological aspects of the globe artichoke processing and storage.Lebensm Wiss Technol. 2016;71:196–201. 10.1016/j.lwt.2016.03.039 [CrossRef] [Google Scholar]

17. López-Molina D, Navarro-Martínez MD, Rojas-Melgarejo F, Hiner ANP, Chazarra S, Rodríguez-López JN. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.).Phytochemistry. 2005;66(12):1476–84. 10.1016/j.phytochem.2005.04.003 [PubMed] [CrossRef] [Google Scholar]

18. Sabater C, Corzo N, Olano A, Montilla A. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L. Carbohydr Polym. 2018;190:43–9. j.carbpol.2018.02.055 [PubMed]

19. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al.Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern?Nutrients. 2019;11(6):1355. 10.3390/nu11061355 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Lombardo S, Pandino G, Mauromicale G. The influence of pre-harvest factors on the quality of globe artichoke.Sci Hortic (Amsterdam). 2018;233:479–90. 10.1016/j.scienta.2017.12.036 [CrossRef] [Google Scholar]

21. Frutos MJ, Ruiz-Cano D, Valero-Cases E, Zamora S, Pérez-Llamas F. Artichoke (Cynara scolymus L.). In: Nabavi SM, Sanches Silva A, editors. Nonvitamin and nonmineral nutritional supplements. London UK: Academic Press; 2019. pp. 135–8. 10.1016/B978-0-12-812491-8.00018-7 10.1016/B978-0-12-812491-8.00018-7 [CrossRef] [CrossRef] [Google Scholar]

22. Gul K, Singh AK, Jabeen R. Nutraceuticals and functional foods: The foods for the future world.Crit Rev Food Sci Nutr. 2016;56(16):2617–27. 10.1080/10408398.2014.903384 [PubMed] [CrossRef] [Google Scholar]

23. Gutiérrez-del-Río I, Fernández J, Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols.Int J Antimicrob Agents. 2018;52(3):309–15. 10.1016/j.ijantimicag.2018.04.024 [PubMed] [CrossRef] [Google Scholar]

24. Abu-Reidah IM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS.Food Chem. 2013;141(3):2269–77. 10.1016/j.foodchem.2013.04.066 [PubMed] [CrossRef] [Google Scholar]

25. Blanco E, Sabetta W, Danzi D, Negro D, Passeri V, De Lisi A, et al.Isolation and characterization of the flavonol regulator CcMYB12 from the globe artichoke[Cynara cardunculus var. scolymus (L.) Fiori]. Front Plant Sci.2018;9:941. 10.3389/fpls.2018.00941 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Dabbou S, Dabbou S, Flamini G, Pandino G, Gasco L, Helal AN. Phytochemical compounds from the crop byproducts of tunisian globe artichoke cultivars.Chem Biodivers. 2016;13(11):1475–83. 10.1002/cbdv.201600046 [PubMed] [CrossRef] [Google Scholar]

27. Jiménez-Moreno N, Cimminelli MJ, Volpe F, Ansó R, Esparza I, Mármol I, et al.Phenolic composition of artichoke waste and its antioxidant capacity on differentiated Caco-2 cells.Nutrients. 2019;11(8):1723. 10.3390/nu11081723 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Pagano I, Piccinelli AL, Celano R, Campone L, Gazzerro P, De Falco E, et al.Chemical profile and cellular antioxidant activity of artichoke by-products.Food Funct. 2016;7(12):4841–50. 10.1039/C6FO01443G [PubMed] [CrossRef] [Google Scholar]

29. Salekzamani S, Ebrahimi‐Mameghani M, Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta‐analysis of animal studies.Phytother Res. 2019;33(1):55–71. 10.1002/ptr.6213 [PubMed] [CrossRef] [Google Scholar]

30. Romain C, Piemontese A, Battista S, Bernini F, Ossoli A, Strazzella A, et al.Anti-atherosclerotic effect of a polyphenol-rich ingredient, Oleactiv®, in a hypercholesterolemia-induced Golden Syrian hamster model.Nutrients. 2018;10(10):1511. 10.3390/nu10101511 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Crinò P, Tavazza R, Rey Muñoz NA, Trionfetti Nisini P, Saccardo F, Ancora G, et al.Recovery, morphological and molecular characterization of globe artichoke ‘Romanesco’ landraces.Genet Resour Crop Evol. 2008;55(6):823–33. 10.1007/s10722-007-9287-5 [CrossRef] [Google Scholar]

32. Donida BT. Production and quality of artichoke seeds [PhD Thesis]. Pelotas, Brazil: Federal University of Pelotas; 2004 (in Portuguese). [Google Scholar]

33. Barros D de M, Oliveira PG de, Moura DF de, Silva JHL da, Rocha TA, Oliveira GB de, et al. Artichoke properties with emphasis on nutritional composition. Braz J Develop. 2020;6(7):43449–58 (in Portuguese). 10.34117/bjdv6n7-094 10.34117/bjdv6n7-094 [CrossRef] [CrossRef]

34. Mathias J. How to plant artichoke. Rev Globo Rural. 2019;401 (in Portuguese). Available from: https://revistagloborural.globo.com/vida-na-fazenda/como-plantar/noticia/2019/04/como-plantar-alcachofra.html.

35. Sousa MJ, Malcata FX. Advances in the role of a plant coagulant (Cynara cardunculus) in vitro and during ripening of cheeses from several milk species.Lait. 2002;82(2):151–70. 10.1051/lait:2002001 [CrossRef] [Google Scholar]

36. Didoné SF. Artichoke micropropagation from seedlings germinated in vitro [MSc Thesis]. Passo Fundo, Brazil: University of Passo Fundo, Faculty of Agronomy and Veterinary Medicine; 2013 (in Portuguese). [Google Scholar]

37. Moraes CF. Shoot propagation and in vitro seed germination of artichoke [MSc Thesis]. Passo Fundo, Brazil: University of Passo Fundo, Faculty of Agronomy and Veterinary Medicine; 2007 (in Portuguese). [Google Scholar]

38. De Camargo Filho WP, De Camargo AMMP, De Camargo FP. Artichoke market in the State of São Paulo and viability of organic production.Economic Information.2009;39(4):70–5. [in Portuguese] [Google Scholar]

39. Martínez-Esplá A, García-Pastor ME, Zapata PJ, Guillén F, Serrano M, Valero D, et al.Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage.Food Chem. 2017;230:343–9. 10.1016/j.foodchem.2017.03.051 [PubMed] [CrossRef] [Google Scholar]

40. Llorach R, Espín JC, Tomás-Barberán FA, Ferreres F. Artichoke (Cynara scolymus L.) Byproducts as a potential source of health-promoting antioxidant phenolics.J Agric Food Chem. 2002;50(12):3458–64. 10.1021/jf0200570 [PubMed] [CrossRef] [Google Scholar]

41. Holgado F, Campos-Monfort G, de las Heras C, Rupérez P. Assessment of the prebiotic potential of globe artichoke by-product through in vitro fermentation by human faecal microbiota.Bioact Carbohydr Diet Fibre.2022;28:100328. 10.1016/j.bcdf.2022.100328 [CrossRef] [Google Scholar]

42. Lutz M, Henríquez C, Escobar M. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked.J Food Compos Anal. 2011;24(1):49–54. 10.1016/j.jfca.2010.06.001 [CrossRef] [Google Scholar]

43. Vieira PM. Evaluation of chemical composition, bioactive compounds and antioxidant activity in six species of edible flowers [MSc Thesis]. Araraquara, Brazil: Paulista State University Julio de Mesquita Filho, Faculty of Pharmaceutical Sciences; 2013 (in Portuguese). [Google Scholar]

44. Gil-Izquierdo A, Gil MI, Conesa MA, Ferreres F. The effect of storage temperatures on vitamin C and phenolics content of artichoke (Cynara scolymus L.) heads.Innov Food Sci Emerg Technol. 2001;2(3):199–202. 10.1016/S1466-8564(01)00018-2 [CrossRef] [Google Scholar]

45. Leroy G, Grongnet JF, Mabeau S, Le Corre D, Baty-Julien C. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage.J Sci Food Agric. 2010;90(7):1203–9. 10.1002/jsfa.3948 [PubMed] [CrossRef] [Google Scholar]

46. Pandino G, Lombardo S, Mauromicale G. Mineral profile in globe artichoke as affected by genotype, head part and environment.J Sci Food Agric. 2011;91(2):302–8. 10.1002/jsfa.4185 [PubMed] [CrossRef] [Google Scholar]

47. Farag MA, Elsebai MF, Khattab AR. Metabolome based classification of artichoke leaf: A prospect for phyto-equivalency of its different leaf origins and commercial preparations.J Pharm Biomed Anal. 2018;158:151–9. 10.1016/j.jpba.2018.05.046 [PubMed] [CrossRef] [Google Scholar]

48. Elsebai MF, Mocan A, Atanasov AG. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent.Front Pharmacol. 2016;7:472. 10.3389/fphar.2016.00472 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Rudić S, Dimitrijević-Branković S, Dimitrijević S, Milić M. Valorization of unexploited artichoke leaves dust for obtaining of extracts rich in natural antioxidants.Separ Purif Tech. 2021;256:117714. 10.1016/j.seppur.2020.117714 [CrossRef] [Google Scholar]

50. Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, et al.Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway.Plant Sci. 2014;223:59–68. 10.1016/j.plantsci.2014.03.007 [PubMed] [CrossRef] [Google Scholar]

51. Bertini A, Gelosia M, Cavalaglio G, Barbanera M, Giannoni T, Tasselli G, et al.Production of carbohydrates from cardoon pre-treated by acid-catalyzed steam explosion and enzymatic hydrolysis.Energies. 2019;12(22):4288. 10.3390/en12224288 [CrossRef] [Google Scholar]

52. Raccuia SA, Melilli MG. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment.Field Crops Res. 2007;101(2):187–97. 10.1016/j.fcr.2006.11.006 [CrossRef] [Google Scholar]

53. Sałata A, Lombardo S, Pandino G, Mauromicale G, Buczkowska H, Nurzyńska-Wierdak R. Biomass yield and polyphenol compounds profile in globe artichoke as affected by irrigation frequency and drying temperature.Ind Crops Prod. 2022;176:114375. 10.1016/j.indcrop.2021.114375 [CrossRef] [Google Scholar]

54. Brat P, Georgé S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, et al.Daily polyphenol intake in France from fruit and vegetables.J Nutr. 2006;136(9):2368–73. 10.1093/jn/136.9.2368 [PubMed] [CrossRef] [Google Scholar]

55. Rouphael Y, Bernardi J, Cardarelli M, Bernardo L, Kane D, Colla G, et al.Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars.J Agric Food Chem. 2016;64(45):8540–8. 10.1021/acs.jafc.6b03856 [PubMed] [CrossRef] [Google Scholar]

56. Naczk M, Shahidi F. Extraction and analysis of phenolics in food.J Chromatogr A. 2004;1054(1–2):95–111. h 10.1016/S0021-9673(04)01409-8 [PubMed] [CrossRef] [Google Scholar]

57. Shahidi F, Naczk M. Food phenolics: Sources, chemistry, effects, applications. Lancaster, PA, USA: Technomic Publishing Co. Inc; 1995. pp. 481–2. [Google Scholar]

58. Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties.Food Chem. 2005;91(1):131–7. 10.1016/j.foodchem.2004.05.056 [CrossRef] [Google Scholar]

59. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance.Nutr Rev. 1998;56(11):317–33. 10.1111/j.1753-4887.1998.tb01670.x [PubMed] [CrossRef] [Google Scholar]

60. Silva PBC. Characterization of biodiversity and valuation of genetic resources of thistle (Cynara cardunculus L.) [MSc Thesis]. Coimbra, Portugal: Faculty of Science and Technology of the University of Coimbra; 2021 (in Portuguese). [Google Scholar]

61. Rangboo V, Noroozi M, Zavoshy R, Rezadoost SA, Mohammadpoorasl A. The effect of artichoke leaf extract on alanine aminotransferase and aspartate aminotransferase in the patients with nonalcoholic steatohepatitis.Int J Hepatol. 2016;2016:4030476. 10.1155/2016/4030476 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Youssef FS, Labib RM, Eldahshan OA, Singab ANB. Synergistic hepatoprotective and antioxidant effect of artichoke, fig, blackberry herbal mixture on HepG2 cells and their metabolic profiling using NMR coupled with chemometrics.Chem Biodivers. 2017;14(12):e1700206. 10.1002/cbdv.201700206 [PubMed] [CrossRef] [Google Scholar]

63. Lombardo S, Pandino G, Mauromicale G, Knödler M, Carle R, Schieber A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke[Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010;119(3):1175–81. 10.1016/j.foodchem.2009.08.033 [CrossRef] [Google Scholar]

64. Guemghar M, Remini H, Bouaoudia-Madi N, Mouhoubi K, Madani K, Boulekbache-Makhlouf L. Phenolic compounds from artichoke (Cynara scolymus L.) byproducts: Optimization of microwave assisted extraction and enrichment of table oil.An Univ Dunarea de Jos Galati Fasc VI Food Technol. 2020;44(1):193–211. 10.35219/foodtechnology.2020.1.12 [CrossRef] [Google Scholar]

65. Rocchetti G, Giuberti G, Lucchini F, Lucini L. Polyphenols and sesquiterpene lactones from artichoke heads: Modulation of starch digestion, gut bioaccessibility, and bioavailability following in vitro digestion and large intestine fermentation.Antioxidants. 2020;9(4):306. 10.3390/antiox9040306 10.3390/antiox9040306 [PMC free article] [PubMed] [CrossRef] [CrossRef] [Google Scholar]

66. Ferioli F, D’Antuono LF. Phenolic compounds in local Italian types of cultivated cardoon (Cynara cardunculus L. var. altilis DC) stalks and artichoke (Cynara cardunculus L. var. scolymus L.) edible sprouts.J Food Compos Anal. 2022;106:104342. 10.1016/j.jfca.2021.104342 [CrossRef] [Google Scholar]

67. Noriega-Rodríguez D, Soto-Maldonado C, Torres-Alarcón C, Pastrana-Castro L, Weinstein-Oppenheimer C, Zúñiga-Hansen ME. Valorization of globe artichoke (Cynara scolymus) agro-industrial discards, obtaining an extract with a selective effect on viability of cancer cell lines.Processes (Basel). 2020;8(6):715. 10.3390/pr8060715 [CrossRef] [Google Scholar]

68. Pandino G, Lombardo S, Mauromicale G, Williamson G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon.J Agric Food Chem. 2010;58(2):1026–31. 10.1021/jf903311j [PubMed] [CrossRef] [Google Scholar]

69. Shallan MA, Ali MA, Meshrf WA, Marrez DA. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract.Biocatal Agric Biotechnol. 2020;29:101774. 10.1016/j.bcab.2020.101774 [CrossRef] [Google Scholar]

70. Schütz K, Persike M, Carle R, Schieber A. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC–DAD–ESI–MSn.Anal Bioanal Chem. 2006;384(7–8):1511–7. 10.1007/s00216-006-0316-6 [PubMed] [CrossRef] [Google Scholar]

71. Bittner S. When quinones meet amino acids: chemical, physical and biological consequences.Amino Acids. 2006;30(3):205–24. 10.1007/s00726-005-0298-2 [PubMed] [CrossRef] [Google Scholar]

72. Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa.Curr Microbiol. 2010;60(1):53–8. 10.1007/s00284-009-9501-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Muthuswamy S, Rupasinghe HPV. Fruit phenolics as natural antimicrobial agents: Selective antimicrobial activity of catechin, chlorogenic acid and phloridzin.J Food Agric Environ. 2007;5(3–4):81–5. [Google Scholar]

74. Curadi M, Picciarelli P, Lorenzi R, Graifenberg A, Ceccarelli N. Antioxidant activity and phenolic compounds in the edible parts of early and late italian artichoke (Cynara scolymus L.) varieties.Ital J Food Sci. 2005;17(1):33–44. [Google Scholar]

75. Giménez MJ, Giménez-Berenguer M, García-Pastor ME, Castillo S, Valverde JM, Serrano M, et al.Influence of flower head order on phenolic content and quality of globe artichoke at harvest and during twenty-one days of cold storage.Sci Hortic (Amsterdam). 2022;295:110846. 10.1016/j.scienta.2021.110846 [CrossRef] [Google Scholar]

76. Soares Mateus AR, Pena A, Sendón R, Almeida C, Nieto GA, Khwaldia K, et al.By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds.Trends Food Sci Technol. 2023;131:220–43. 10.1016/j.tifs.2022.12.004 [CrossRef] [Google Scholar]

77. Zhu X, Zhang H, Lo R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.J Agric Food Chem. 2004;52(24):7272–8. 10.1021/jf0490192 [PubMed] [CrossRef] [Google Scholar]

78. Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.).J Agric Food Chem. 2003;51(3):601–8. 10.1021/jf020792b [PubMed] [CrossRef] [Google Scholar]

79. Ben Salem M, Affes H, Athmouni K, Ksouda K, Dhouibi R, Sahnoun Z, et al.Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC.Evid Based Complement Alternat Med. 2017;2017:4951937. 10.1155/2017/4951937 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Sahebkar A, Pirro M, Banach M, Mikhailidis DP, Atkin SL, Cicero AFG. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis.Crit Rev Food Sci Nutr. 2018;58(15):2549–56. 10.1080/10408398.2017.1332572 [PubMed] [CrossRef] [Google Scholar]

81. Domínguez-Fernández M, Ludwig IA, De Peña MP, Cid C. Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: The effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota.Food Funct. 2021;12(5):1996–2011. 10.1039/D0FO03119D [PubMed] [CrossRef] [Google Scholar]

82. Romani A, Pinelli P, Cantini C, Cimato A, Heimler D. Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.).Food Chem. 2006;95(2):221–5. 10.1016/j.foodchem.2005.01.013 [CrossRef] [Google Scholar]

83. Bogavac-Stanojevic N, Kotur Stevuljevic J, Cerne D, Zupan J, Marc J, Vujic Z, et al.The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet.Pharm Biol. 2018;56(1):138–44. 10.1080/13880209.2018.1434549 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Li H, Xia N, Brausch I, Yao Y, Förstermann U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.J Pharmacol Exp Ther. 2004;310(3):926–32. 10.1124/jpet.104.066639 [PubMed] [CrossRef] [Google Scholar]

85. Santos HO, Bueno AA, Mota JF. The effect of artichoke on lipid profile: A review of possible mechanisms of action.Pharmacol Res. 2018;137:170–8. 10.1016/j.phrs.2018.10.007 [PubMed] [CrossRef] [Google Scholar]

86. Rahimuddin SA, Khoja SM, Zuhair MM, Howell NK, Brown JE. Inhibition of lipid peroxidation in UVA‐treated skin fibroblasts by luteolin and its glucosides.Eur J Lipid Sci Technol. 2007;109(7):647–55. 10.1002/ejlt.200700012 [CrossRef] [Google Scholar]

87. Giménez MJ, Giménez-Berenguer M, García-Pastor ME, Parra J, Zapata PJ, Castillo S. The influence of flower head order and gibberellic acid treatment on the hydroxycinnamic acid and luteolin derivatives content in globe artichoke cultivars.Foods. 2021;10(8):1813. 10.3390/foods10081813 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. He M, Wu T, Pan S, Xu X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study.Appl Surf Sci. 2014;305:515–21. 10.1016/j.apsusc.2014.03.125 [CrossRef] [Google Scholar]

89. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids.Int J Antimicrob Agents. 2005;26(5):343–56. 10.1016/j.ijantimicag.2005.09.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Wu JG, Wang PJ, Chen SC. Antioxidant and antimicrobial effectiveness of catechin‐impregnated PVA–starch film on red meat.J Food Qual. 2010;33(6):780–801. 10.1111/j.1745-4557.2010.00350.x [CrossRef] [Google Scholar]

91. Reygaert WC. The antimicrobial possibilities of green tea.Front Microbiol. 2014;5:434. 10.3389/fmicb.2014.00434 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Fan FY, Sang LX, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease.Molecules. 2017;22(3):484. 10.3390/molecules22030484 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Xiong LG, Chen YJ, Tong JW, Huang JA, Li J, Gong YS, et al.Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress.Food Chem. 2017;217:196–204. 10.1016/j.foodchem.2016.08.098 [PubMed] [CrossRef] [Google Scholar]

94. Liang W, Fernandes AP, Holmgren A, Li X, Zhong L. Bacterial thioredoxin and thioredoxin reductase as mediators for epigallocatechin 3-gallate-induced antimicrobial action.FEBS J. 2016;283(3):446–58. 10.1111/febs.13587 [PubMed] [CrossRef] [Google Scholar]

95. Blando F, Calabriso N, Berland H, Maiorano G, Gerardi C, Carluccio MA, et al.Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables.Int J Mol Sci. 2018;19(1):169. 10.3390/ijms19010169 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Natural antioxidant anthocyanins - A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration.Nutrients. 2019;11(6):1195. 10.3390/nu11061195 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Zayed A, Serag A, Farag MA. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits.J Funct Foods. 2020;69:103937. 10.1016/j.jff.2020.103937 [CrossRef] [Google Scholar]

98. Xia N, Pautz A, Wollscheid U, Reifenberg G, Förstermann U, Li H. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.Molecules. 2014;19(3):3654–68. 10.3390/molecules19033654 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Zazzali I, Gabilondo J, Peixoto Mallmann L, Rodrigues E, Perullini M, Santagapita PR. Overall evaluation of artichoke leftovers: Agricultural measurement and bioactive properties assessed after green and low-cost extraction methods.Food Biosci. 2021;41:100963. 10.1016/j.fbio.2021.100963 [CrossRef] [Google Scholar]

100. Llorente BE, Obregón WD, Avilés FX, Caffini NO, Vairo-Cavalli S. Use of artichoke (Cynara scolymus) flower extract as a substitute for bovine rennet in the manufacture of Gouda-type cheese: Characterization of aspartic proteases.Food Chem. 2014;159:55–63. 10.1016/j.foodchem.2014.03.007 [PubMed] [CrossRef] [Google Scholar]

101. Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, et al.Multiplicity of aspartic proteinases from Cynara cardunculus L.Planta. 2009;230(2):429–39. 10.1007/s00425-009-0948-9 [PubMed] [CrossRef] [Google Scholar]

102. White PC, Cordeiro MC, Arnold D, Brodelius PE, Kay J. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus).J Biol Chem. 1999;274(24):16685–93. 10.1074/jbc.274.24.16685 [PubMed] [CrossRef] [Google Scholar]

103. Cordeiro MC, Pais MS, Brodelius PE. Tissue-specific expression of multiple forms of cyprosin (aspartic proteinase) in flowers of Cynara cardunculus.Physiol Plant. 1994;92(4):645–53. 10.1111/j.1399-3054.1994.tb03035.x [PubMed] [CrossRef] [Google Scholar]

104. Vieira M, Pissarra J, Veríssimo P, Castanheira P, Costa Y, Pires E, et al.Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L.Plant Mol Biol. 2001;45:529–39. 10.1023/A:1010675015318 [PubMed] [CrossRef] [Google Scholar]

105. Ramalho-Santos M, Verissimo P, Cortes L, Samyn B, Van Beeumen J, Pires E, et al.Identification and proteolytic processing of procardosin A.Eur J Biochem. 1998;255(1):133–8. 10.1046/j.1432-1327.1998.2550133.x [PubMed] [CrossRef] [Google Scholar]

106. Chen S, Zhao J, Agboola S. Isolation and partial characterization of rennet-like proteases from australian cardoon (Cynara cardunculus L.).J Agric Food Chem. 2003;51(10):3127–34. 10.1021/jf025842r [PubMed] [CrossRef] [Google Scholar]

107. Macedo PC de JD. Cardosine A biogenesis: Study of expression and biosynthetic pathway [MSc Thesis]. Porto, Portugal: University of Porto, Faculty of Sciences; 2005 (in Portuguese). [Google Scholar]

108. Alavi F, Momen S. Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry.Int Dairy J. 2020;107:104709. 10.1016/j.idairyj.2020.104709 [CrossRef] [Google Scholar]

109. Prados F, Pino A, Fernández-Salguero J. Effect of a powdered vegetable coagulant from cardoon Cynara cardunculus in the accelerated ripening of Manchego cheese.Int J Food Sci Technol. 2007;42(5):556–61. 10.1111/j.1365-2621.2006.01271.x [CrossRef] [Google Scholar]

110. Llorente BE, Brutti CB, Natalucci CL, Caffini NO. Partial characterization of a milk clotting proteinase isolated from artichoke (Cynara scolymus L., Asteraceae).Lat Am J Pharm. 1997;16(1):37–42. [Google Scholar]

111. Chazarra S, Sidrach L, López-Molina D, Rodríguez-López JN. Characterization of the milk-clotting properties of extracts from artichoke (Cynara scolymus, L.) flowers.Int Dairy J. 2007;17(12):1393–400. 10.1016/j.idairyj.2007.04.010 [CrossRef] [Google Scholar]

112. Cordeiro M, Lowther T, Dunn BM, Guruprasad K, Blundell T, Pais MS, et al. Substrate specificity and molecular modelling of aspartic proteinases (cyprosins) from flowers of Cynara cardunculus subsp. flavescens cv. Cardoon. In: James MNG, editor. Aspartic proteinases. Advances in experimental medicine and biology, vol. 436. Boston, MA, USA: Springer; 1998. pp. 473–9. 10.1007/978-1-4615-5373-1_65 10.1007/978-1-4615-5373-1_65 [PubMed] [CrossRef] [CrossRef] [Google Scholar]

113. Heimgartner U, Pietrzak M, Geertsen R, Brodelius P, da Silva Figueiredo AC, Pais MSS. Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus.Phytochemistry. 1990;29(5):1405–10. 10.1016/0031-9422(90)80090-4 [CrossRef] [Google Scholar]

114. Brodelius PE, Cordeiro MC, Pais MS. Aspartic proteinases (cyprosins) from Cynara cardunculus spp. flavescens cv. cardoon; Purification, characterisation, and tissue-specific expression. In: Takahashi K, editor. Aspartic proteinases. Advances in experimental medicine and biology, vol. 362. Boston, MA, USA: Springer; 1995. pp. 255–66. 10.1007/978-1-4615-1871-6_29 10.1007/978-1-4615-1871-6_29 [PubMed] [CrossRef] [CrossRef] [Google Scholar]

115. Todaro A, Peluso O, Catalano AE, Mauromicale G, Spagna G. Polyphenol oxidase activity from three sicilian artichoke [Cynara cardunculus L. var. scolymus L. (Fiori)] cultivars: Studies and technological application on minimally processed production.J Agric Food Chem. 2010;58(3):1714–8. 10.1021/jf903399b [PubMed] [CrossRef] [Google Scholar]

116. Cardinali A, Sergio L, Di Venere D, Linsalata V, Fortunato D, Conti A, et al.Purification and characterization of a cationic peroxidase from artichoke leaves.J Sci Food Agric. 2007;87(7):1417–23. 10.1002/jsfa.2882 [CrossRef] [Google Scholar]

117. Silva GM de S. Costa JS da, Freire JO, Santos LS, Bonomo RCF. Artichoke leaf extracts: Proteolytic activity, coagulant and HPLC analysis. Ciênc agrotec. 2021;45:e001721 (in Portuguese). https://doi.org/ 10.1590/1413-7054202145001721 [CrossRef]

118. Coelho MAZ, Salgado AM, Ribeiro BB. Enzyme technology. Rio de Janeiro, Brazil: Foundation for Research Support in the State of Rio de Janeiro (FAPERJ). Petrópolis, RJ, Brazil: Publisher of Biomedical Publications (EPUB); 2008 (in Portuguese). [Google Scholar]

119. Borzani W, Lima U de A, Aquarone E, Schmidell W. Industrial biotechnology: Fermentative and enzymatic processes. São Paulo, Brazil: Edgard Blücher LTDA; 2001 (in Portuguese). 123. Pereira JFB, Freire MG, Coutinho JAP. Aqueous two-phase systems: Towards novel and more disruptive applications.Fluid Phase Equilib. 2020;505:112341. 10.1016/j.fluid.2019.112341 [CrossRef] [Google Scholar]

120. Mukherjee S. Isolation and purification of industrial enzymes: Advances in enzyme technology. In: Singh RS, Singhania RR, Pandey A, Larroche C, editors. Advances in enzyme technology. Series: Biomass, biofuels, biochemicals. Amsterdam, Netherlands: Elsevier B.V.; 2019. pp. 41–70. 10.1016/B978-0-444-64114-4.00002-9 10.1016/B978-0-444-64114-4.00002-9 [CrossRef] [CrossRef] [Google Scholar]

121. Nazir A, Khan K, Maan A, Zia R, Giorno L, Schroën K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams.Trends Food Sci Technol. 2019;86:426–38. 10.1016/j.tifs.2019.02.049 [CrossRef] [Google Scholar]

122. Vijayaraghavan P, Raj SRF, Vincent SGP. Industrial enzymes: Recovery and purification challenges. In: Dhillon GS, Kaur S, editors. Agro-industrial wastes as feedstock for enzyme production. San Diego, CA, USA: Academic Press; 2016. pp. 95–110. 10.1016/B978-0-12-802392-1.00004-6 10.1016/B978-0-12-802392-1.00004-6 [CrossRef] [CrossRef] [Google Scholar]

123. Pereira JFB, Freire MG, Coutinho JAP. Aqueous two-phase systems: Towards novel and more disruptive applications.Fluid Ph Equilibria. 2020;505:112341. 10.1016/j.fluid.2019.112341 [CrossRef] [Google Scholar]

124. Magalhães FF, Tavares APM, Freire MG. Advances in aqueous biphasic systems for biotechnology applications.Curr Opin Green Sustain Chem. 2021;27:100417. 10.1016/j.cogsc.2020.100417 [CrossRef] [Google Scholar]

125. Asenjo JA, Andrews BA. Aqueous two-phase systems for protein separation: A perspective.J Chromatogr A. 2011;1218(49):8826–35. 10.1016/j.chroma.2011.06.051 [PubMed] [CrossRef] [Google Scholar]

126. Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. 2016;84(1):A.3F.1-A.3F.9. 10.1002/0471140864.psa03fs84 10.1002/0471140864.psa03fs84 [PubMed] [CrossRef] [CrossRef]

127. Ben Amira A, Bauwens J, De Pauw E, Besbes S, Attia H, Francis F, et al.Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a proteomic approach.J Chem Biol. 2017;10(1):25–33. 10.1007/s12154-016-0161-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Almeida CM, Simões I. Cardoon-based rennets for cheese production.Appl Microbiol Biotechnol. 2018;102(11):4675–86. 10.1007/s00253-018-9032-3 [PubMed] [CrossRef] [Google Scholar]

129. Claus T, Maruyama SA, Palombini SV, Montanher PF, Bonafé EG, de Oliveira Santos O, Junior, et al.Chemical characterization and use of artichoke parts for protection from oxidative stress in canola oil.Lebensm Wiss Technol. 2015;61(2):346–51. 10.1016/j.lwt.2014.12.050 [CrossRef] [Google Scholar]

130. Terkmane N, Krea M, Moulai-Mostefa N. Optimisation of inulin extraction from globe artichoke (Cynara cardunculus L. subsp. scolymus (L.) Hegi.) by electromagnetic induction heating process.Int J Food Sci Technol. 2016;51(9):1997–2008. 10.1111/ijfs.13167 [CrossRef] [Google Scholar]

131. López-Molina D, Hiner ANP, Tudela J, García-Cánovas F, Rodríguez-López JN. Enzymatic removal of phenols from aqueous solution by artichoke (Cynara scolymus L.) extracts.Enzyme Microb Technol. 2003;33(5):738–42. 10.1016/S0141-0229(03)00208-4 [CrossRef] [Google Scholar]

132. Ramos PAB, Santos SAO, Guerra ÂR, Guerreiro O, Freire CSR, Rocha SM, et al.Phenolic composition and antioxidant activity of different morphological parts of Cynara cardunculus L. var. altilis (DC).Ind Crops Prod. 2014;61:460–71. 10.1016/j.indcrop.2014.07.042 [CrossRef] [Google Scholar]

133. Rodríguez-López JN, Tudela Serrano JB, García Cánovas F. Artichoke extract (Cynara scolymus L.) and its use in decontamination of media which are contaminated with phenols, aromatic amines, organic halides and/or heavy metals. WO02/34897A1. 2002.

134. Grammelis P, Malliopoulou A, Basinas P, Danalatos N. Cultivation and characterization of Cynara Cardunculus for solid biofuels production in the Mediterranean region.Int J Mol Sci. 2008;9(7):1241–58. 10.3390/ijms9071241 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Oliveira I, Gominho J, Diberardino S, Duarte E. Characterization of Cynara cardunculus L. stalks and their suitability for biogas production.Ind Crops Prod. 2012;40:318–23. 10.1016/j.indcrop.2012.03.029 [CrossRef] [Google Scholar]

136. Pesce GR, Negri M, Bacenetti J, Mauromicale G. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus.Ind Crops Prod. 2017;103:233–9. 10.1016/j.indcrop.2017.04.003 [CrossRef] [Google Scholar]

137. Bencheikh I, Azoulay K, Mabrouki J, El Hajjaji S, Moufti A, Labjar N. The use and the performance of chemically treated artichoke leaves for textile industrial effluents treatment.Chem Data Collect.2021;31:100597. 10.1016/j.cdc.2020.100597 [CrossRef] [Google Scholar]

138. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al.Lipid-lowering nutraceuticals in clinical practice: Position paper from an international lipid expert panel.Nutr Rev. 2017;75(9):731–67. 10.1093/nutrit/nux047 [PubMed] [CrossRef] [Google Scholar]

139. Kraft K. Artichoke leaf extract — Recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts.Phytomedicine. 1997;4(4):369–78. 10.1016/S0944-7113(97)80049-9 [PubMed] [CrossRef] [Google Scholar]

140. Mahboubi M. Cynara scolymus (artichoke) and its efficacy in management of obesity.Bull Fac Pharm Cairo Univ. 2018;56(2):115–20. 10.1016/j.bfopcu.2018.10.003 [CrossRef] [Google Scholar]

141. Mileo AM, Di Venere D, Abbruzzese C, Miccadei S. Long term exposure to polyphenols of artichoke (Cynara scolymus L.) exerts induction of senescence driven growth arrest in the MDA-MB231 human breast cancer cell line.Oxid Med Cell Longev. 2015;2015:363827. 10.1155/2015/363827 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio MC, et al.Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion.Oncotarget. 2015;6(20):18134–50. 10.18632/oncotarget.4017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Miccadei S, Di Venere D, Cardinali A, Romano F, Durazzo A, Foddai MS, et al.Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.Nutr Cancer. 2008;60(2):276–83. 10.1080/01635580801891583 [PubMed] [CrossRef] [Google Scholar]

144. Pandino G, Meneghini M, Tavazza R, Lombardo S, Mauromicale G. Phytochemicals accumulation and antioxidant activity in callus and suspension cultures of Cynara scolymus L.Plant Cell Tissue Organ Cult. 2017;128(1):223–30. 10.1007/s11240-016-1102-6 [CrossRef] [Google Scholar]

145. Yearbook of the United Nations. Rome, Italy: Food and Agricultural Organization of the United Nations (FAO); 2003. pp. 1510-1511. 10.18356/bd7db620-en 10.18356/bd7db620-en [CrossRef] [CrossRef]

146. Esposito M, Di Pierro P, Dejonghe W, Mariniello L, Porta R. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.Food Chem. 2016;204:115–21. 10.1016/j.foodchem.2016.02.060 [PubMed] [CrossRef] [Google Scholar]

147. Abd El-Salam BAEY, Ibrahim OAEH, El-Sayed HAER. Purification and characterization of milk clotting enzyme from artichoke (Cynara cardunculus L.) flowers as coagulant on white soft cheese.Int J Dairy Sci.2017;12(4):254–65. 10.3923/ijds.2017.254.265 [CrossRef] [Google Scholar]

148. Tito FR, Pepe A, Tonon CV, Daleo GR, Guevara MG. Determination and characterisation of milk-clotting activity of two Solanum tuberosum aspartic proteases (StAPs).Int Dairy J. 2020;104:104645. 10.1016/j.idairyj.2020.104645 [CrossRef] [Google Scholar]

149. Sałata A, Gruszecki R. The quantitative analysis of poliphenolic compounds in different parts of the artichoke (Cynara scolymus L.) depending on growth stage of plants.Acta Sci Pol Hortorum Cultus. 2010;9(3):175–81. [Google Scholar]

150. Fissore EN, Domingo CS, Pujol CA, Damonte EB, Rojas AM, Gerschenson LN. Upgrading of residues of bracts, stems and hearts of Cynara cardunculus L. var. scolymus to functional fractions enriched in soluble fiber.Food Funct. 2014;5(3):463. 10.1039/c3fo60561b [PubMed] [CrossRef] [Google Scholar]

151. Alaei F, Hojjatoleslamy M, Hashemi Dehkordi SM. The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages.Food Sci Nutr. 2018;6(2):512–9. 10.1002/fsn3.585 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Faustino M, Veiga M, Sousa P, Costa E, Silva S, Pintado M. Agro-food byproducts as a new source of natural food additives.Molecules. 2019;24(6):1056. 10.3390/molecules24061056 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Mauromicale G, Sortino O, Pesce GR, Agnello M, Mauro RP. Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils.Ind Crops Prod. 2014;57:82–9. 10.1016/j.indcrop.2014.03.013 [CrossRef] [Google Scholar]

154. Pandino G, Lombardo S, Mauromicale G. Globe artichoke leaves and floral stems as a source of bioactive compounds.Ind Crops Prod. 2013;44:44–9. 10.1016/j.indcrop.2012.10.022 [CrossRef] [Google Scholar]

155. Tang X, Wei R, Deng A, Lei T. Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-induced liver injury in mice.Nutrients. 2017;9(9):1000. 10.3390/nu9091000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Ben Salem M, Affes H, Ksouda K, Dhouibi R, Sahnoun Z, Hammami S, et al.Pharmacological studies of artichoke leaf extract and their health benefits.Plant Foods Hum Nutr. 2015;70(4):441–53. 10.1007/s11130-015-0503-8 [PubMed] [CrossRef] [Google Scholar]

157. Colak E, Ustuner MC, Tekin N, Colak E, Burukoglu D, Degirmenci I, et al.The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats.Springerplus. 2016;5(1):216. 10.1186/s40064-016-1894-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bioactive Compounds from Artichoke and Application Potential (2024)

FAQs

What bioactive compounds are in artichokes? ›

Artichoke can be considered as a functional or nutraceutical food because it contains bioactive phytoconstituents such as polyphenols (phenolic acids, chlorogenic, caffeic, dicaffeoylquinic and ferulic acids), flavones (apigenin and luteolin) and their glycosides (apigenin-7-O-glucoside and cinnaroside), anthocyanins ( ...

What are the application of bioactive compounds? ›

Bioactive compounds are generally added to foods or food products for the enhancement of their health promoting properties. It is a fact that, carotenoids, anthocyanins, and curcumin are the most commonly known coloring bioactive compounds.

What can the chemical found in artichokes be used to treat? ›

Artichoke is also commonly consumed as a food. It contains chemicals that can reduce nausea and vomiting, spasms, and gas. These chemicals have also been shown to lower cholesterol and protect the liver. People commonly use artichoke for indigestion and high levels of cholesterol or other fats in the blood.

What are 5 bioactive compounds? ›

Some examples of bioactive compounds are carotenoids, flavonoids, carnitine, choline, coenzyme Q, dithiolthiones, phytosterols, phytoestrogens, glucosinolates, polyphenols, and taurine. Since vitamins and minerals elicit pharmacological effects, they can be categorized as bioactive compounds as well.

What compound is extracted from artichokes? ›

Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts.

Are artichokes high in pesticide? ›

But as Deborah Madison writes in her book, “Vegetable Literacy,” artichokes “constitute a monocrop, and because they grow in a climate that is hospitable to all kinds of problematic creatures and conditions — moths, aphids and the like — artichokes tend to be heavily sprayed with pesticides.”

What are bioactive compounds good for? ›

A type of chemical found in small amounts in plants and certain foods (such as fruits, vegetables, nuts, oils, and whole grains). Bioactive compounds have actions in the body that may promote good health. They are being studied in the prevention of cancer, heart disease, and other diseases.

What is the difference between phytochemicals and bioactive compounds? ›

Phytochemicals are from plant sources. Phytochemicals are simply chemicals produced by plants in order to protect themselves. Bioactive compounds are plant or animal based compounds that have health benefits to the human being, so some bioactive compounds are also phytochemicals depending with their source."

What are the benefits of bioactive compounds in plants? ›

Edible plants are rich in bioactive compounds that have physiological effects such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Natural plant extracts are frequently used to prolong the shelf life of fresh and processed foods, therefore preserving their quality and safety.

What are the negative side effects of artichokes? ›

Common side effects of artichoke include:
  • Gas (flatulence)
  • Upset stomach.
  • Diarrhea.
  • Allergic reactions, especially in people who are hypersensitive to the aster family of plants.
Nov 7, 2022

Why can't you eat the stem of the artichoke? ›

And by the way, the stem of the artichoke is also edible, but you have to peel it first. Depending on your cooking method, you may want to remove the stem altogether, so that it stands up straight. But the stem is actually as tasty as the heart.

What are the side effects of Jerusalem artichoke inulin? ›

The significant side effect of Jerusalem Artichokes is the presence of dietary inulin fibre. As this substance is non-digestible, there are chances that people are intolerant to it. Thus, people intolerant to inulin may experience indigestion, abdominal pain, diarrhoea, and flatulence.

What are the applications of bioactive compounds? ›

Compounds such as bioactive peptides, phytosterols, fibers, fatty acids, and vitamins have the ability to regulate various metabolic processes in human body such as free radical scavenging, inhibition or induction of gene expression, receptor activity, and enzymes.

What bioactive compounds are in functional foods? ›

Polyphenols, carotenoids, and peptides are the most studied bioactive compounds. Bioactive components, such as chitosan, polyunsaturated fatty acids, and astaxanthin from marine animals and tocopherols of oils of plant origin have excellent potential as functional food ingredients, since they have health benefits.

How to identify bioactive compounds? ›

Cell membrane chromatography (CMC), which was first proposed by He et al., has become a common cell membrane-based model for screening bioactive compounds [72,73] and has been widely used in screening potential NP active components (Table 1).

What are the active ingredients in artichoke extract? ›

cynarine – the most valued and main active ingredient, phenolic acids (e.g. chlorogenic acid), inulin (soluble fiber and prebiotic),li> mineral compounds.

What is the chemical composition of artichoke? ›

Artichokes are rich in polyphenols (including cynarin), flavonoids and their derivatives, and, for this reason, they have aroused interest in their pharmacological properties. The best-known activity of polyphenols is antioxidant activity.

What are artichokes rich in? ›

Artichokes are packed with powerful nutrients. Artichokes are low in fat while rich in fiber, vitamins, minerals, and antioxidants. Particularly high in folate and vitamin C, they also supply important minerals, such as magnesium, phosphorus, and potassium ( 2 ).

What bioactive compounds are in vegetables? ›

The most common BACs identified in edible leafy vegetables are dietary fiber, minerals, phenolic compounds, phytic acid, phytoestrogens, polyunsaturated fatty acids (PUFAs), sulfur compounds, terpene derivatives, and vitamins [2].

Top Articles
Latest Posts
Article information

Author: Jamar Nader

Last Updated:

Views: 5773

Rating: 4.4 / 5 (55 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Jamar Nader

Birthday: 1995-02-28

Address: Apt. 536 6162 Reichel Greens, Port Zackaryside, CT 22682-9804

Phone: +9958384818317

Job: IT Representative

Hobby: Scrapbooking, Hiking, Hunting, Kite flying, Blacksmithing, Video gaming, Foraging

Introduction: My name is Jamar Nader, I am a fine, shiny, colorful, bright, nice, perfect, curious person who loves writing and wants to share my knowledge and understanding with you.