Progress in quantum teleportation (2024)

  • Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

    Article ADS MathSciNet MATH Google Scholar

  • Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).

    Article ADS MathSciNet MATH Google Scholar

  • Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon.9, 641–652 (2015).

    Article ADS Google Scholar

  • Gisin, N. & Thew, R. Quantum communication. Nat. Photon.1, 165–171 (2007).

    Article ADS Google Scholar

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article ADS Google Scholar

  • Zhang, W. et al. A device-independent quantum key distribution system for distant users. Nature 607, 687–691 (2022).

    Article ADS Google Scholar

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article Google Scholar

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article ADS Google Scholar

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article ADS Google Scholar

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article ADS MATH Google Scholar

  • Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998).

    Article ADS Google Scholar

  • Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).

    Article Google Scholar

  • Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).

    Article ADS Google Scholar

  • Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).

    Article ADS Google Scholar

  • Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article ADS Google Scholar

  • Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article ADS Google Scholar

  • Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon.10, 671–675 (2016).

    Article ADS Google Scholar

  • Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon.10, 676–680 (2016).

    Article ADS Google Scholar

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article ADS MathSciNet MATH Google Scholar

  • Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article ADS Google Scholar

  • Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article ADS Google Scholar

  • Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    Article ADS Google Scholar

  • Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).

    Article ADS Google Scholar

  • Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).

    Article ADS Google Scholar

  • Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995).

    Article ADS MathSciNet MATH Google Scholar

  • Cavalcanti, D., Skrzypczyk, P. & Šupić, I. All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017).

    Article ADS Google Scholar

  • Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Article Google Scholar

  • Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article ADS Google Scholar

  • Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001).

    Article ADS Google Scholar

  • Weinfurter, H. Experimental bell-state analysis. Europhys. Lett. 25, 559 (1994).

    Article ADS Google Scholar

  • Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727 (1995).

    Article ADS Google Scholar

  • Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article ADS Google Scholar

  • Ishizaka, S. & Hiroshima, T. Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008).

    Article ADS Google Scholar

  • Karlsson, A. & Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998).

    Article ADS MathSciNet Google Scholar

  • van Loock, P. & Braunstein, S. L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482 (2000).

    Article ADS Google Scholar

  • Scarani, V., Iblisdir, S., Gisin, N. & Acin, A. Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005).

    Article ADS MathSciNet MATH Google Scholar

  • Hayashi, A., Hashimoto, T. & Horibe, M. Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2005).

    Article ADS Google Scholar

  • Bruß, D. & Macchiavello, C. Optimal state estimation for d-dimensional quantum systems. Phys. Lett. A 253, 249–251 (1999).

    Article ADS Google Scholar

  • Chen, C.-K., Chen, S.-H., Huang, N.-N. & Li, C.-M. Identifying genuine quantum teleportation. Phys. Rev. A 104, 052429 (2021).

    Article ADS MathSciNet Google Scholar

  • Carvacho, G. et al. Experimental study of nonclassical teleportation beyond average fidelity. Phys. Rev. Lett. 121, 140501 (2018).

    Article ADS Google Scholar

  • Hu, X.-M. et al. Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019).

    Article Google Scholar

  • Lipka-Bartosik, P. & Skrzypczyk, P. Operational advantages provided by nonclassical teleportation. Phys. Rev. Res. 2, 023029 (2020).

    Article Google Scholar

  • Mozrzymas, M., Studziński, M. & Kopszak, P. Optimal multi-port-based teleportation schemes. Quantum 5, 477 (2021).

    Article MATH Google Scholar

  • Studziński, M., Mozrzymas, M., Kopszak, P. & Horodecki, M. Efficient multi port-based teleportation schemes. IEEE Trans. Inf. Theory 68, 7892–7912 (2022).

    Article MathSciNet Google Scholar

  • Mozrzymas, M., Studziński, M., Strelchuk, S. & Horodecki, M. Optimal port-based teleportation. New J. Phys. 20, 053006 (2018).

    Article ADS Google Scholar

  • Studziński, M., Strelchuk, S., Mozrzymas, M. & Horodecki, M. Port-based teleportation in arbitrary dimension. Sci. Rep. 7, 10871 (2017).

    Article ADS Google Scholar

  • Pereira, J. L., Banchi, L. & Pirandola, S. Continuous variable port-based teleportation. Preprint at https://arxiv.org/abs/2302.08522 (2023).

  • Achatz, L. et al. Simultaneous transmission of hyper-entanglement in 3 degrees of freedom through a multicore fiber. Preprint at https://arxiv.org/abs/2208.10777 (2022).

  • Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multi-photon graph states from a single atom. Nature 608, 677–681 (2022).

    Article ADS Google Scholar

  • Conlon, L. O. et al. Approaching optimal entangling collective measurements on quantum computing platforms. Nat. Phys. 19, 351–357 (2023).

    Article Google Scholar

  • Hou, Z. et al. Deterministic realization of collective measurements via photonic quantum walks. Nat. Commun. 9, 1414 (2018).

    Article ADS Google Scholar

  • Laurenza, R., Lupo, C., Spedalieri, G., Braunstein, S. L. & Pirandola, S. Channel simulation in quantum metrology. Quantum Meas. Quantum Metrol. 5, 1–12 (2018).

    Article ADS Google Scholar

  • Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article ADS Google Scholar

  • Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217 (1997).

    Article ADS MathSciNet MATH Google Scholar

  • Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012).

    Article ADS Google Scholar

  • Laurenza, R. et al. Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources. Phys. Rev. A 100, 042301 (2019).

    Article ADS Google Scholar

  • Laurenza, R. & Pirandola, S. General bounds for sender–receiver capacities in multipoint quantum communications. Phys. Rev. A 96, 032318 (2017).

    Article ADS Google Scholar

  • Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).

  • Laurenza, R., Walk, N., Eisert, J. & Pirandola, S. Rate limits in quantum networks with lossy repeaters. Phys. Rev. Res. 4, 023158 (2022).

    Article Google Scholar

  • Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2, 51 (2019).

    Article Google Scholar

  • Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photon.12, 724–733 (2018).

    Article ADS Google Scholar

  • Pirandola, S. & Lupo, C. Ultimate precision of adaptive noise estimation. Phys. Rev. Lett. 118, 100502 (2017).

    Article ADS Google Scholar

  • Zhou, S. & Jiang, L. Asymptotic theory of quantum channel estimation. PRX Quantum 2, 010343 (2021).

    Article Google Scholar

  • Zhuang, Q. & Pirandola, S. Ultimate limits for multiple quantum channel discrimination. Phys. Rev. Lett. 125, 080505 (2020).

    Article ADS MathSciNet Google Scholar

  • Pirandola, S., Laurenza, R., Lupo, C. & Pereira, J. L. Fundamental limits to quantum channel discrimination. npj Quantum Inf. 5, 50 (2019).

    Article ADS Google Scholar

  • Sedlák, M., Bisio, A. & Ziman, M. Optimal probabilistic storage and retrieval of unitary channels. Phys. Rev. Lett. 122, 170502 (2019).

    Article ADS Google Scholar

  • Banchi, L., Pereira, J., Lloyd, S. & Pirandola, S. Convex optimization of programmable quantum computers. npj Quantum Inf. 6, 42 (2020).

    Article ADS Google Scholar

  • Kubicki, A. M., Palazuelos, C. & Perez-Garcia, D. Resource quantification for the no-programing theorem. Phys. Rev. Lett. 122, 080505 (2019).

    Article ADS Google Scholar

  • Pereira, J., Banchi, L. & Pirandola, S. Characterising port-based teleportation as universal simulator of qubit channels. J. Phys. A Math. Theor. 54, 205301 (2021).

    Article ADS MathSciNet MATH Google Scholar

  • Lipka-Bartosik, P. & Skrzypczyk, P. Catalytic quantum teleportation. Phys. Rev. Lett. 127, 080502 (2021).

    Article ADS MathSciNet Google Scholar

  • Yoshida, B. & Yao, N. Y. Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019).

    Google Scholar

  • Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X 12, 031013 (2022).

    Google Scholar

  • Chen, M.-C. et al. Directly measuring a multiparticle quantum wave function via quantum teleportation. Phys. Rev. Lett. 127, 030402 (2021).

    Article ADS Google Scholar

  • Hou, P.-Y. et al. Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).

    Article ADS Google Scholar

  • Sun, K. et al. Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons. Opt. Lett. 45, 6410–6413 (2020).

    Article ADS Google Scholar

  • Li, J.-Y. et al. Activating hidden teleportation power: theory and experiment. Phys. Rev. Res. 3, 023045 (2021).

    Article Google Scholar

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

    Article ADS Google Scholar

  • Wang, F. et al. Generation of the complete four-dimensional Bell basis. Optica 4, 1462–1467 (2017).

    Article ADS Google Scholar

  • Martin, A. et al. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017).

    Article ADS Google Scholar

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article ADS MathSciNet MATH Google Scholar

  • Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article ADS Google Scholar

  • Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999).

    Article ADS MathSciNet Google Scholar

  • Vaidman, L. & Yoran, N. Methods for reliable teleportation. Phys. Rev. A 59, 116 (1999).

    Article ADS Google Scholar

  • Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006).

    Article ADS Google Scholar

  • Sheng, Y.-B., Deng, F.-G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).

    Article ADS Google Scholar

  • Williams, B. P., Sadlier, R. J. & Humble, T. S. Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017).

    Article ADS Google Scholar

  • Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370 (2001).

    Article ADS Google Scholar

  • Grice, W. P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011).

    Article ADS Google Scholar

  • Ewert, F. & van Loock, P. 3/4-Efficient bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014).

    Article ADS Google Scholar

  • Ewert, F., Bergmann, M. & van Loock, P. Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016).

    Article ADS Google Scholar

  • Schmidt, F. & van Loock, P. Efficiencies of logical Bell measurements on Calderbank–Shor–Steane codes with static linear optics. Phys. Rev. A 99, 062308 (2019).

    Article ADS Google Scholar

  • Bayerbach, M. J., D’Aurelio, S. E., van Loock, P. & Barz, S. Bell-state measurement exceeding 50% success probability with linear optics. Preprint at https://arxiv.org/abs/2208.02271 (2022).

  • Graham, T. M., Bernstein, H. J., Wei, T.-C., Junge, M. & Kwiat, P. G. Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015).

    Article Google Scholar

  • Chapman, J. C., Graham, T. M., Zeitler, C. K., Bernstein, H. J. & Kwiat, P. G. Time-bin and polarization superdense teleportation for space applications. Phys. Rev. Appl. 14, 014044 (2020).

    Article ADS Google Scholar

  • Ru, S. et al. Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology. Phys. Rev. A 103, 052404 (2021).

    Article ADS Google Scholar

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article ADS Google Scholar

  • Wei, T.-C., Barreiro, J. T. & Kwiat, P. G. Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305 (2007).

    Article ADS MathSciNet Google Scholar

  • Luo, M.-X., Li, H.-R., Lai, H. & Wang, X. Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016).

    Article ADS Google Scholar

  • Choi, S., Lee, S.-H. & Jeong, H. Teleportation of a multiphoton qubit using hybrid entanglement with a loss-tolerant carrier qubit. Phys. Rev. A 102, 012424 (2020).

    Article ADS MathSciNet Google Scholar

  • Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Article Google Scholar

  • Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article ADS Google Scholar

  • Ecker, S. et al. Experimental single-copy entanglement distillation. Phys. Rev. Lett. 127, 040506 (2021).

    Article ADS Google Scholar

  • Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon.9, 536–542 (2015).

    Article ADS Google Scholar

  • Kim, J.-H. et al. Noise-resistant quantum communications using hyperentanglement. Optica 8, 1524–1531 (2021).

    Article ADS Google Scholar

  • Hu, X.-M. et al. Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021).

    Article ADS Google Scholar

  • Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017).

    Article ADS Google Scholar

  • Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A. & Galda, A. Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022).

    Article ADS Google Scholar

  • Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).

    Article Google Scholar

  • Fu, Y. et al. Experimental investigation of quantum correlations in a two-qutrit spin system. Phys. Rev. Lett. 129, 100501 (2022).

    Article ADS Google Scholar

  • Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).

    Article ADS Google Scholar

  • Hu, X.-M. et al. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018).

    Article ADS Google Scholar

  • Wang, T.-J, Yang, G.-Q & Wang, C. Control power of high-dimensional controlled teleportation. Phys. Rev. A 101, 012323 (2020).

    Article ADS Google Scholar

  • Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    Article ADS Google Scholar

  • Ecker, S. et al. Overcoming noise in entanglement distribution. Phys. Rev. X 9, 041042 (2019).

    Google Scholar

  • Hu, X.-M. et al. Pathways for entanglement-based quantum communication in the face of high noise. Phys. Rev. Lett. 127, 110505 (2021).

    Article ADS Google Scholar

  • Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).

    Article ADS Google Scholar

  • Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).

    Article Google Scholar

  • Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    Article ADS MathSciNet MATH Google Scholar

  • Hu, X.-M. et al. Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica 7, 738–743 (2020).

    Article ADS Google Scholar

  • Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (2002).

    Article ADS Google Scholar

  • Zhang, Y. et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8, 632 (2017).

    Article ADS Google Scholar

  • Ivonovic, I. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14, 3241 (1981).

    Article ADS MathSciNet Google Scholar

  • Walborn, S. P., Monken, C., Pádua, S. & Ribeiro, P. S. Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010).

    Article ADS Google Scholar

  • Qiu, X., Guo, H. & Chen, L. Quantum teleportation of high-dimensional spatial modes: towards an image teleporter. Preprint at https://arxiv.org/abs/2112.03764 (2021).

  • Sephton, B. et al. High-dimensional spatial teleportation enabled by nonlinear optics. Preprint at https://arxiv.org/abs/2111.13624v1 (2021).

  • Chen, L. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl. 10, 148 (2021).

    Article ADS Google Scholar

  • Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).

    Article Google Scholar

  • Cao, H. et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica 7, 232–237 (2020).

    Article ADS Google Scholar

  • Ikuta, T. & Takesue, H. Four-dimensional entanglement distribution over 100 km. Sci. Rep. 8, 817 (2018).

    Article ADS Google Scholar

  • Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article Google Scholar

  • Pu, Y. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8, 15359 (2017).

    Article ADS Google Scholar

  • Dąbrowski, M. et al. Certification of high-dimensional entanglement and Einstein–Podolsky–Rosen steering with cold atomic quantum memory. Phys. Rev. A 98, 042126 (2018).

    Article ADS Google Scholar

  • Tiranov, A. et al. Quantification of multidimensional entanglement stored in a crystal. Phys. Rev. A 96, 040303 (2017).

    Article ADS Google Scholar

  • Zhou, Z.-Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015).

    Article ADS Google Scholar

  • Li, C. et al. Quantum communication between multiplexed atomic quantum memories. Phys. Rev. Lett. 124, 240504 (2020).

    Article ADS Google Scholar

  • Bacco, D., Bulmer, J. F., Erhard, M., Huber, M. & Paesani, S. Proposal for practical multidimensional quantum networks. Phys. Rev. A 104, 052618 (2021).

    Article ADS Google Scholar

  • Braunstein, S. L. & Van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

    Article ADS MathSciNet MATH Google Scholar

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article ADS Google Scholar

  • Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article ADS Google Scholar

  • Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400–404 (2013).

    Article Google Scholar

  • Liuzzo-Scorpo, P., Mari, A., Giovannetti, V. & Adesso, G. Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119, 120503 (2017).

    Article ADS Google Scholar

  • He, Q., Rosales-Zárate, L., Adesso, G. & Reid, M. D. Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115, 180502 (2015).

    Article ADS Google Scholar

  • Lie, S. H. & Jeong, H. Limitations of teleporting a qubit via a two-mode squeezed state. Photonics Res. 7, A7–A13 (2019).

    Article Google Scholar

  • Tserkis, S., Dias, J. & Ralph, T. C. Simulation of Gaussian channels via teleportation and error correction of Gaussian states. Phys. Rev. A 98, 052335 (2018).

    Article ADS Google Scholar

  • Dias, J. & Ralph, T. C. Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95, 022312 (2017).

    Article ADS Google Scholar

  • Borregaard, J., Gehring, T., Neergaard-Nielsen, J. S. & Andersen, U. L. Super sensitivity and super resolution with quantum teleportation. npj Quantum Inf. 5, 16 (2019).

    Article ADS Google Scholar

  • Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).

    Article ADS Google Scholar

  • Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).

    Article ADS Google Scholar

  • Wu, Y. et al. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes. Photonics Res. 10, 1909–1914 (2022).

    Article Google Scholar

  • Andersen, U. L., Neergaard-Nielsen, J. S., Van Loock, P. & Furusawa, A. Hybrid discrete-and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015).

    Article Google Scholar

  • Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).

    Article ADS Google Scholar

  • Takeda, S., Fuwa, M., van Loock, P. & Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).

    Article ADS Google Scholar

  • Ulanov, A. E., Sychev, D., Pushkina, A. A., Fedorov, I. A. & Lvovsky, A. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017).

    Article ADS MathSciNet Google Scholar

  • Guccione, G. et al. Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6, eaba4508 (2020).

    Article ADS Google Scholar

  • Sychev, D. V. et al. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun. 9, 3672 (2018).

    Article ADS Google Scholar

  • Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon.3, 706–714 (2009).

    Article ADS Google Scholar

  • Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    Article ADS Google Scholar

  • van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

    Article ADS Google Scholar

  • Nadlinger, D. et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 607, 682–686 (2022).

    Article ADS Google Scholar

  • Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).

    Article ADS Google Scholar

  • Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article ADS Google Scholar

  • Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article ADS Google Scholar

  • Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Preprint at https://arxiv.org/abs/2212.10820 (2022).

  • Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).

    Article ADS Google Scholar

  • Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).

    Article ADS Google Scholar

  • Wei, S.-H. et al. Towards real-world quantum networks: a review. Laser Photonics Rev. 16, 2100219 (2022).

    Article ADS Google Scholar

  • Barasiński, A., Černoch, A. & Lemr, K. Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 170501 (2019).

    Article ADS MathSciNet Google Scholar

  • Lee, S. M., Lee, S.-W., Jeong, H. & Park, H. S. Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124, 060501 (2020).

    Article ADS MathSciNet Google Scholar

  • Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quant. 2, 017002 (2021).

    Article Google Scholar

  • Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).

    Article ADS Google Scholar

  • Yang, T. et al. Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501 (2006).

    Article ADS Google Scholar

  • Kaltenbaek, R., Blauensteiner, B., Żukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).

    Article ADS Google Scholar

  • Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article ADS Google Scholar

  • Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).

    Article ADS Google Scholar

  • Basso Basset, F. et al. Quantum teleportation with imperfect quantum dots. npj Quantum Inf. 7, 7 (2021).

    Article ADS Google Scholar

  • Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom c-band quantum dots. npj Quantum Inf. 6, 14 (2020).

    Article ADS Google Scholar

  • Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication c band. Phys. Rev. Appl. 13, 054052 (2020).

    Article ADS Google Scholar

  • Sun, Q.-C. et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4, 1214–1218 (2017).

    Article ADS Google Scholar

  • Takesue, H. et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015).

    Article ADS Google Scholar

  • Valivarthi, R. et al. Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020).

    Article ADS Google Scholar

  • Shen, S. et al. Hertz-rate metropolitan quantum teleportation. Preprint at https://arxiv.org/abs/2303.13866 (2022).

  • Huo, M. et al. Deterministic quantum teleportation through fiber channels. Sci. Adv. 4, eaas9401 (2018).

    Article ADS Google Scholar

  • Liu, Z.-D. et al. Efficient quantum teleportation under noise with hybrid entanglement and reverse decoherence. Preprint at https://arxiv.org/abs/2210.14935 (2022).

  • Fortes, R. & Rigolin, G. Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015).

    Article ADS Google Scholar

  • Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article ADS Google Scholar

  • Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article ADS Google Scholar

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article ADS Google Scholar

  • Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010).

    Article ADS Google Scholar

  • Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).

    Article ADS Google Scholar

  • Jennewein, T. et al. Qeyssat: a mission proposal for a quantum receiver in space. In Advances in Photonics of Quantum Computing, Memory, and Communication VII, Vol. 8997, 21–27 (SPIE, 2014).

  • Oi, D. K. et al. Cubesat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).

    Article Google Scholar

  • Chen, L.-K. et al. Observation of ten-photon entanglement using thin BiB3O6 crystals. Optica 4, 77–83 (2017).

    Article ADS Google Scholar

  • Zuo, Z., Wang, Y., Liao, Q. & Guo, Y. Overcoming the uplink limit of satellite-based quantum communication with deterministic quantum teleportation. Phys. Rev. A 104, 022615 (2021).

    Article ADS MathSciNet Google Scholar

  • Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021).

    Article ADS Google Scholar

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon.3, 687–695 (2009).

    Article ADS Google Scholar

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon.14, 273–284 (2020).

    Article ADS Google Scholar

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article Google Scholar

  • Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article Google Scholar

  • Zhang, M. et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41 (2019).

    Article ADS Google Scholar

  • Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon.8, 770–774 (2014).

    Article ADS Google Scholar

  • Taballione, C. et al. 8 × 8 Reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019).

    Article ADS Google Scholar

  • Zhang, H. et al. Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder. Sci. Adv. 8, eabn9783 (2022).

    Article ADS Google Scholar

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article ADS Google Scholar

  • Fiaschi, N. et al. Optomechanical quantum teleportation. Nat. Photon.15, 817–821 (2021).

    Article ADS MathSciNet Google Scholar

  • Lago-Rivera, D., Rakonjac, J. V., Grandi, S. & de Riedmatten, H. Long-distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Preprint at https://arxiv.org/abs/2209.06249 (2022).

  • Zhu, T.-X. et al. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett. 128, 180501 (2022).

    Article ADS Google Scholar

  • Seri, A. et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934–941 (2018).

    Article ADS Google Scholar

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article ADS Google Scholar

  • Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article ADS MATH Google Scholar

  • Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).

    Article ADS Google Scholar

  • Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).

    Article ADS Google Scholar

  • Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M. & Guo, G.-C. Experimental teleportation of a quantum controlled-not gate. Phys. Rev. Lett. 93, 240501 (2004).

    Article ADS Google Scholar

  • Gao, W.-B. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    Article ADS Google Scholar

  • Ewert, F. & van Loock, P. Teleportation-assisted optical controlled-sign gates. Phys. Rev. A 99, 032333 (2019).

    Article ADS Google Scholar

  • Qiao, H. et al. Conditional teleportation of quantum-dot spin states. Nat. Commun. 11, 3022 (2020).

    Article ADS Google Scholar

  • Kojima, Y. et al. Probabilistic teleportation of a quantum dot spin qubit. npj Quantum Inf. 7, 68 (2021).

    Article ADS Google Scholar

  • Shor, P. W. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

  • Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    Article ADS MathSciNet Google Scholar

  • Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article ADS Google Scholar

  • Fedorov, K. G. et al. Experimental quantum teleportation of propagating microwaves. Sci. Adv. 7, eabk0891 (2021).

    Article ADS Google Scholar

  • Zhong, Y. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    Article Google Scholar

  • Yan, H. et al. Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128, 080504 (2022).

    Article ADS Google Scholar

  • Wu, J., Cui, C., Fan, L. & Zhuang, Q. Deterministic microwave-optical transduction based on quantum teleportation. Phys. Rev. Appl. 16, 064044 (2021).

    Article ADS Google Scholar

  • Ning, W. et al. Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019).

    Article ADS Google Scholar

  • Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Preprint at https://arxiv.org/abs/2208.14907 (2022).

  • Walther, H., Varcoe, B. T., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006).

    Article ADS Google Scholar

  • Langenfeld, S. et al. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126, 130502 (2021).

    Article ADS Google Scholar

  • Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).

    Article ADS Google Scholar

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article ADS Google Scholar

  • Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon.13, 210–213 (2019).

    Article ADS Google Scholar

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article ADS Google Scholar

  • Walshe, B. W., Baragiola, B. Q., Alexander, R. N. & Menicucci, N. C. Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411 (2020).

    Article ADS MathSciNet Google Scholar

  • Luo, Y.-H. et al. Quantum teleportation of physical qubits into logical code spaces. Proc. Natl Acad. Sci. USA 118, e2026250118 (2021).

    Article Google Scholar

  • Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information Ch. 10 (Cambridge Univ. Press, 2002).

  • Huang, H.-L. et al. Emulating quantum teleportation of a Majorana zero mode qubit. Phys. Rev. Lett. 126, 090502 (2021).

    Article ADS Google Scholar

  • Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    Article ADS Google Scholar

  • Olivo, A. & Grosshans, F. Ancilla-assisted linear optical Bell measurements and their optimality. Phys. Rev. A 98, 042323 (2018).

    Article ADS Google Scholar

  • Aktas, D. et al. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photonics Rev. 10, 451–457 (2016).

    Article ADS Google Scholar

  • Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article ADS Google Scholar

  • Qiu, X., Li, F., Liu, H., Chen, X. & Chen, L. Optical vortex copier and regenerator in the Fourier domain. Photonics Res. 6, 641–646 (2018).

    Article Google Scholar

  • Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    Article ADS Google Scholar

  • Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    Article ADS Google Scholar

  • Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).

    Article ADS Google Scholar

  • Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Preprint at https://arxiv.org/abs/2206.07216 (2022).

  • Riebe, M. et al. Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008).

    Article Google Scholar

  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article ADS Google Scholar

  • van Leent, T. et al. Long-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).

    Article Google Scholar

  • Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129, 050503 (2022).

    Article ADS Google Scholar

  • Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).

    Article Google Scholar

  • Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article ADS Google Scholar

  • Schäfer, F., f*ckuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article Google Scholar

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article ADS Google Scholar

  • Chen, L. et al. Planar-integrated magneto-optical trap. Phys. Rev. Appl. 17, 034031 (2022).

    Article ADS Google Scholar

  • Yao, R. et al. Experimental realization of a multiqubit quantum memory in a 218-ion chain. Phys. Rev. A 106, 062617 (2022).

    Article Google Scholar

  • Rakonjac, J. V. et al. Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett. 127, 210502 (2021).

    Article ADS Google Scholar

  • Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020).

    Article ADS Google Scholar

  • Progress in quantum teleportation (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Lidia Grady

    Last Updated:

    Views: 5857

    Rating: 4.4 / 5 (65 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Lidia Grady

    Birthday: 1992-01-22

    Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

    Phone: +29914464387516

    Job: Customer Engineer

    Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

    Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.