Macroautophagy: The key ingredient to a healthy diet? (2024)

1. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutrition. 2004;7:187–200. [PubMed] [Google Scholar]

2. Greenwald P, Clifford CK, Milner JA. Diet and cancer prevention. Eur J Cancer. 2001;37:948–65. [PubMed] [Google Scholar]

3. Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenera-tive processes. Neurobiol Aging. 2002;23:719–35. [PubMed] [Google Scholar]

4. Shahidi F. Functional foods: Their role in health promotion and disease prevention. J Food Sci. 2004;69:146–9. [Google Scholar]

5. Paterson I, Anderson EA. The renaissance of natrual products as drug candidates. Science. 2005;310:451–3. [PubMed] [Google Scholar]

6. da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol. 2001;1:364–9. [PubMed] [Google Scholar]

7. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34. [PubMed] [Google Scholar]

8. Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy. 2006;2:85–90. [PubMed] [Google Scholar]

9. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2007;14:500–10. [PubMed] [Google Scholar]

10. Singletary K, Milner J. Diet, autophagy and cancer: A review. Cancer Epidemiol Biomarkers Prev. 2008;17:1596–610. [PubMed] [Google Scholar]

11. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42. [PMC free article] [PubMed] [Google Scholar]

12. Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9. [PubMed] [Google Scholar]

13. Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: Cell survival in the land of plenty. Nat Rev Mol Cell Biol. 2005;6:439–48. [PubMed] [Google Scholar]

14. Mortimore GE, Schworer CM. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature. 1977;270:174–6. [PubMed] [Google Scholar]

15. Filkins JP. Lysosomes and hepatic regression during fasting. Am J Phys. 1970;219:923–7. [PubMed] [Google Scholar]

16. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44. [PubMed] [Google Scholar]

17. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–60. [PMC free article] [PubMed] [Google Scholar]

18. Kang C, Avery L. To be or not to be, the level of autophagy is the question: Dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4:82–4. [PMC free article] [PubMed] [Google Scholar]

19. Codogno P, Meijer AJ. Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ. 2005;12:1509–18. [PubMed] [Google Scholar]

20. Baehrecke EH. Autophagy: Dual roles in life and death? Nat Rev Mol Cell Biol. 2005;6:505–10. [PubMed] [Google Scholar]

21. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A. Autophagy and aging: The importance of maintaining “clean” cells. Autophagy. 2005;1:131–40. [PubMed] [Google Scholar]

22. Hars E, Qi H, Ryazanov A, Jin S, Cai L, Hu C, Liu LF. Autophagy regulates ageing in C. elegans. Autophagy. 2007;3:93–5. [PubMed] [Google Scholar]

23. Simonsen A, Cumming R, Brech A, Isakson P, Schubert D, Finley K. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy. 2007;4:176–84. [PubMed] [Google Scholar]

24. Piper MDW, Bartke A. Diet and aging. Cell Metab. 2008;8:99–104. [PubMed] [Google Scholar]

25. Dilova I, Easlon E, Lin SJ. Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci. 2007;64:752–67. [PMC free article] [PubMed] [Google Scholar]

26. Kanfi Y, Peshti V, Gozlan YM, Rathaus M, Gil R, Cohen HY. Regulation of SIRT1 protein levels by nutrient availability. FEBS Letters. 2008;582:2417–23. [PubMed] [Google Scholar]

27. Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging and calorie restriction. Genes Dev. 2006;20:2913–21. [PubMed] [Google Scholar]

28. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. PNAS. 2008;105:3374–9. [PMC free article] [PubMed] [Google Scholar]

29. Bergamini E, Cavallini G, Donati A, Gori Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomedicine and Pharmacotherapy. 2003;57:203–8. [PubMed] [Google Scholar]

30. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: When the cleaning crew goes on strike. The Lancet Neurology. 2007;6:352–61. [PubMed] [Google Scholar]

31. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6:304–12. [PubMed] [Google Scholar]

32. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9. [PubMed] [Google Scholar]

33. Komatsu M, Waguri S, Chiba T, Murata S, Iwata JI, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurode-generation in mice. Nature. 2006;441:880–4. [PubMed] [Google Scholar]

34. Levine B. Cell biology: Autophagy and cancer. Nature. 2007;446:745–7. [PubMed] [Google Scholar]

35. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75. [PMC free article] [PubMed] [Google Scholar]

36. Hoyer-Hansen M, Jaattela M. Autophagy: An emerging target for cancer therapy. Autophagy. 2008;4:574–80. [PubMed] [Google Scholar]

37. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA, Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takesh*ta F, Talbot NJ, Talloczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–75. [PMC free article] [PubMed] [Google Scholar]

38. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14. [PubMed] [Google Scholar]

39. Eskelinen EL. Fine structure of the autophagosome. Methods Mol Biol. 2008;445:11–28. [PubMed] [Google Scholar]

40. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, Saftig P, Uchiyama Y. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (batten disease) Am J Pathol. 2005;167:1713–28. [PMC free article] [PubMed] [Google Scholar]

41. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian hom*ologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8. [PMC free article] [PubMed] [Google Scholar]

42. Martinet W, De Meyer GRY, Andries L, Herman AG, Kockx MM. In situ detection of starvation-induced autophagy. J Histochem Cytochem. 2006;54:85–96. [PubMed] [Google Scholar]

43. Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75. [PubMed] [Google Scholar]

44. Seglen PO, Gordon PB, Tolleshaug H, Høyvik H. Use of [3H]raffinose as a specific probe of autophagic sequestration. Exp Cell Res. 1986;162:273–7. [PubMed] [Google Scholar]

45. Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3:181–206. [PubMed] [Google Scholar]

46. Hutchins MU, Klionsky DJ. Vacuolar localization of oligomeric alpha—mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in saccharomyces cerevisiae. J Biol Chem. 2001;276:20491–8. [PMC free article] [PubMed] [Google Scholar]

47. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36:2491–502. [PubMed] [Google Scholar]

48. Mizushima N, Klionsky DJ. Protein turnover via autophagy: Implications for metabolism. Annu Rev Nutr. 2007;27:19–40. [PubMed] [Google Scholar]

49. Mordier S, Deval C, Bechet D, Tassa A, Ferrara M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem. 2000;275:29900–6. [PubMed] [Google Scholar]

50. Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem. 2004;279:8452–9. [PubMed] [Google Scholar]

51. Blommaart EFC, Luiken JJFP, Blommaart PJE, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995;270:2320–6. [PubMed] [Google Scholar]

52. Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 2008;7:456–65. [PMC free article] [PubMed] [Google Scholar]

53. Bergstrom J, Furst P, Vinnars E. Effect of a test meal, without and with protein, on muscle and plasma free amino acids. Clin Sci. 1990;79:331–7. [PubMed] [Google Scholar]

54. Kassi E, Papavassiliou AG. Could glucose be a proaging factor? J Cell Mol Med. 1008;12:1194–8. [PMC free article] [PubMed] [Google Scholar]

55. Proud CG, Hundal HS, Taylor PM. Nutrient sensing in animal cells and integration of nutrient and endocrine signalling pathways. Topics in Current Genetics. 2004;7:25–64. [Google Scholar]

56. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8:325–32. [PubMed] [Google Scholar]

57. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, f*ckusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173–6. [PubMed] [Google Scholar]

58. Pan X, Tan N, Zeng G, Zhang Y, Jia R. Amentoflavone and its derivatives as novel natural inhibitors of human cathepsin B. Bioorg Med Chem. 2005;13:5819–25. [PubMed] [Google Scholar]

59. Gordon PB, Holen I, Seglen PO. Protection by naringin and some other flavonoids of hepatocytic autophagy and endocytosis against inhibition by okadaic acid. J Biol Chem. 1995;270:5830–8. [PubMed] [Google Scholar]

60. Woo ER, Lee JY, Cho IJ, Kim SG, Kang KW. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NFκB activation in macrophages. Pharmacol Res. 2005;51:539–46. [PubMed] [Google Scholar]

61. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8:950–88. [Google Scholar]

62. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend saccharomyces cerevisiae life span. Nature. 2003 [PubMed] [Google Scholar]

63. Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Brit J Pharmacol. 2000;130:1115–23. [PMC free article] [PubMed] [Google Scholar]

64. Wang W, Heiderman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinogen. 2000;28:102–10. [PubMed] [Google Scholar]

65. Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, Osawa T, Uchida K. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem. 2002;277:8492–9. [PubMed] [Google Scholar]

66. Kassie F, Pool-Zobel B, Parzefall W, Knasmuller S. Genotoxic effects of benzyl isothiocyanate, a natural chemopreventive agent. Mutagenesis. 1999;14:595–603. [PubMed] [Google Scholar]

67. Xiao D, Vogel V, Singh SV. Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by bax and bak. Mol Cancer Ther. 2006;5:2931–45. [PubMed] [Google Scholar]

68. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell. 2005;122:927–39. [PubMed] [Google Scholar]

69. Yan Y, Zhang B, Wang L, Xie Y, Peng T, Bai B, Zhou P. Induction of apoptosis and autophagic cell death by the vanillin derivative 6-bromine-5-hydroxy-4-methoxybenz-aldehyde is accompanied by the cleavage of DNA-PKcs and rapid destruction of c-myc oncoprotein in HepG2 cells. Cancer Lett. 2007;252:280–9. [PubMed] [Google Scholar]

70. Barone JJ, Roberts HR. Caffeine consumption. Food Chem Toxicol. 1996;34:119–29. [PubMed] [Google Scholar]

71. Winter G, Hazan R, Bakalinsky AT, Abeliovich H. Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy. 2008;4:28–36. [PubMed] [Google Scholar]

72. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C. Caffeine extends yeast life span by targeting TORC1. Mol Microbi. 2008;69:277–85. [PubMed] [Google Scholar]

73. Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 2007;247:26–39. [PMC free article] [PubMed] [Google Scholar]

74. Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20:1–30. [PubMed] [Google Scholar]

75. Lieberman HR, Wurtman RJ, Emde GG, Roberts C, Coviella ILG. The effects of low doses of caffeine on human performance and mood. Psychopharmacology. 1987;92:308–12. [PubMed] [Google Scholar]

76. Jarvis MJ. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology. 1993;110:45–52. [PubMed] [Google Scholar]

77. Warburton DM. Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology. 1995;119:66–70. [PubMed] [Google Scholar]

78. Gevaerd MS, Takahashi RN, Silveira R, Da Cunha C. Caffeine reverses the memory disruption induced by intra-nigral MPTP-injection in rats. Brain Res Bull. 2001;55:101–6. [PubMed] [Google Scholar]

79. Chang CP, Yang MC, Liu HS, Lin YS, Lei HY. Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model. Hepatology. 2007;45:286–96. [PubMed] [Google Scholar]

80. Lei HY, Chang CP. Induction of autophagy by concanavalin A and its application in anti-tumor therapy. Autophagy. 2007;3:402–4. [PubMed] [Google Scholar]

81. Singh S. From exotic spice to modern drug? Cell. 2007;130:765–8. [PubMed] [Google Scholar]

82. Salvioli S, Sikora E, Cooper EL, Franceschi C. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. eCAM. 2007;4:181–90. [PMC free article] [PubMed] [Google Scholar]

83. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68. [PMC free article] [PubMed] [Google Scholar]

84. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 2007;72:29–39. [PubMed] [Google Scholar]

85. Shinojima N, Yokoyama T, Kondo Y, Konda S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3:635–7. [PubMed] [Google Scholar]

86. Verger P, Chambolle M, Babayou P, Le Breton S, Volatier JL. Estimation fo the distribution of the maximum theoretical intake for ten additives in france. Food Addit Contam. 1998;15:1867–76. [PubMed] [Google Scholar]

87. Commandeur JN, Vermeulen NP. Cytotoxicity and cytoprotective activities of natural compounds. Xenobiotica. 1996;26:667–80. [PubMed] [Google Scholar]

88. Ammon HP, Wahl MA. Pharmacology of curcuma longa. Planta Med. 1991;57:1–7. [PubMed] [Google Scholar]

89. Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin—cellular and molecular mechanisms of action. Crit Rev Food Sci. 2004;44:97–111. [PubMed] [Google Scholar]

90. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmaco*kinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6. [PubMed] [Google Scholar]

91. El Nasri NA, El Tinay AH. Functional properties of fenugreek (trigonella foenum graecum) protein concentrate. Food Chem. 2007;103:582–9. [Google Scholar]

92. Amin A, Alkaabi A, Al-Falasi S, Daoud SA. Chemopreventive activities of trigonella foenum graecum (fenugreek) against breast cancer. Cell Biol Int. 2005;29:687–94. [PubMed] [Google Scholar]

93. Lee W, Shen S, Lin H, Hou W, Yang L, Chen Y. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol. 2002;63:225–36. [PubMed] [Google Scholar]

94. Kuntz S, Wenzel U, Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity and apoptosis in human colon cancer cell lines. Eur J Nutr. 1999;38:133–42. [PubMed] [Google Scholar]

95. Gossner G, Choi M, Tan L, Fogoros S, Griffith KA, Kuenker M, Liu JR. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol. 2007;105:23–30. [PubMed] [Google Scholar]

96. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003;21:744–57. [PubMed] [Google Scholar]

97. Tettamanti G, Malagoli D, Marchesini E, Congiu T, de Eguileor M, Ottaviani E. Oligomycin A induces autophagy in the IPLB-LdFB insect cell line. Cell Tissue Res. 2006;326:179–86. [PubMed] [Google Scholar]

98. Inoki K, Zhu T, Guan K. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90. [PubMed] [Google Scholar]

99. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy. 2007;3:405–7. [PubMed] [Google Scholar]

100. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita. 2007;43:348–61. [PubMed] [Google Scholar]

101. Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: Involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9. [PubMed] [Google Scholar]

102. Manach C, Scalbert A, Morangd C, Remesy C, Jimenez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47. [PubMed] [Google Scholar]

103. Demulle L, Vanden Berghe T, De Keukeleire D, Vandenabeele P. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (humulus lupulus L) induces a caspase-independent form of cell death. Phytother Res. 2007;22:197–203. [PubMed] [Google Scholar]

104. Schrauzer GN. Lithium: Occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002;21:14–21. [PubMed] [Google Scholar]

105. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170:1101–11. [PMC free article] [PubMed] [Google Scholar]

106. Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, Hara Y, Yamamoto H, Kinae N. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS Lett. 1998;438:220–4. [PubMed] [Google Scholar]

107. Yang S, Yang W, Chang H, Chu S, Hsieh Y. Luteolin induces apoptosis in oral squamous cancer cells. J Dent Res. 2008;87:401–6. [PubMed] [Google Scholar]

108. Nakagawa A, Sawada T, Okada T, Ohsawa T, Adachi M, Kubota K. New antineoplastic agent, MK615, from UME (a variety of) japanese apricot inhibits growth of breast cancer cells in vitro. Breast J. 2007;13:44–9. [PubMed] [Google Scholar]

109. Mori S, Sawada T, Okada T, Ohsawa T, Adachi M, Keiichi K. New anti-proliferative agent, MK615, from japanese apricot “prunus mume” induces striking autophagy in colong cancer cell in vitro. World J Gastroenterol. 2007;13:6512–7. [PMC free article] [PubMed] [Google Scholar]

110. Hollman PCH, van Trijp JMP, Buysman MNCPvd, Gaag MS, Mengelers MJB, de Vries JHM, Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997;418:152–6. [PubMed] [Google Scholar]

111. Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A. Quercetin mediates preferential degradation of oncogenic ras and causes autophagy in ha-RAS-transformed human colon cells. Carcinogenesis. 2007;28:1021–31. [PubMed] [Google Scholar]

112. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. In Press, Corrected Proof. [PubMed] [Google Scholar]

113. Frémont L. Biological effects of resveratrol. Life Sci. 2000;66:663–73. [PubMed] [Google Scholar]

114. Pirola L, Frojdo S. Resveratrol: One molecule, many targets. IUBMB Life. 2008;60:323–32. [PubMed] [Google Scholar]

115. Opipari AW, Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res. 2004;64:696–703. [PubMed] [Google Scholar]

116. Kueck A, Opipari AW, Jr, Griffith KA, Tan L, Choi M, Huang J, Wahl H, Liu JR. Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol Oncol. 2007;107:450–7. [PubMed] [Google Scholar]

117. Ohshiro K, Rayala SK, El-Naggar AK, Kumar R. Delivery of cytoplasmic proteins to autophagosomes. Autophagy. 2008;4:104–6. [PubMed] [Google Scholar]

118. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 2008;15:1318–29. [PubMed] [Google Scholar]

119. Bergamini E, Cavallini G, Donati A, Gori Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother. 2003;57:203–8. [PubMed] [Google Scholar]

120. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Pecker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42. [PMC free article] [PubMed] [Google Scholar]

121. Holme AL, Pervaiz S. Resveratrol in cell fate decisions. J Bioenerg Biomembr. 2007;39:59–63. [PubMed] [Google Scholar]

122. Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res. 2007;635:90–104. [PubMed] [Google Scholar]

123. Zhang Y, Callaway EC. High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J. 2002;364:301–7. [PMC free article] [PubMed] [Google Scholar]

124. Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35. [PubMed] [Google Scholar]

125. Theriault A, Chao JT, Wang QI, Gapor A, Adeli K. Tocotrienol: A review of its therapeutic potential. Clin Biochem. 1999;32:309–19. [PubMed] [Google Scholar]

126. Rickmann M, Vaquero EC, Malagelada JR, Molero X. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology. 2007;132:2518–32. [PubMed] [Google Scholar]

127. Sen CK, Khanna S, Roy S. Tocotrienols in health and disease: The other half of the natural vitamin E family. Mol Apsects Med. 2007;28:692–728. [PMC free article] [PubMed] [Google Scholar]

128. Ellington AA, Berhow M, Singletary KW. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis. 2005;26:159–67. [PubMed] [Google Scholar]

129. Fournier D, Erdman J, Jr, Gordon G. Soy, its components, and cancer prevention: A review of the in vitro, animal, and human data. Cancer Epidemiol Biomarkers Prev. 1998;7:1055–65. [PubMed] [Google Scholar]

130. Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281:1415–23. [PubMed] [Google Scholar]

131. Ohtani S, Iwamaru A, Deng W, Ueda K, Wu G, Jayachandran G, Kondo S, Atkinson EN, Minna JD, Roth JA, Ji L. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 2007;67:6293–303. [PubMed] [Google Scholar]

132. Foy CJ, Passmore AP, Vahidassr MD, Young IS, Lawson JT. Plasma chain-breaking antioxidants in alzheimer’s disease, vascular dementia and parkinson’s disease. QJM. 1999;92:39–45. [PubMed] [Google Scholar]

133. Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281:1415–23. [PubMed] [Google Scholar]

134. Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, Holick MF. The role of vitamin D in cancer prevention. Am J Public Health. 2006;96:252–61. [PMC free article] [PubMed] [Google Scholar]

135. Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and beclin 1-mediated autophagic cell death. Cell Death Differ. 2005;12:1297–309. [PubMed] [Google Scholar]

136. Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jäättelä M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and bcl-2. Mol Cell. 2007;25:193–205. [PubMed] [Google Scholar]

137. Calvo MS, Whiting SJ, Barton CN. Vitamin D intake: A global perspective of current status. J Nutr. 2005;135:310–6. [PubMed] [Google Scholar]

138. Heaney RP. Vitamin D: How much do we need, and how much is too much? Osteroporos Int. 2000;11:553–5. [PubMed] [Google Scholar]

139. Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr. 1996;126:1181–6. [PubMed] [Google Scholar]

140. Yokoyama R, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, Yuo A, Hayashi Y, Georgescu MM, Kondo Y, Kondo S, Ohyashiki K. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:1–12. [PubMed] [Google Scholar]

141. Singh H, Duerksen DR. Vitamin K and nutrition support. Nutr Clin Pract. 2003;18:359–65. [PubMed] [Google Scholar]

142. Klionsky DJ. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8:931–7. [PubMed] [Google Scholar]

143. Kadowaki M, Karim MR, Carpi A, Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med. 2006;27:426–43. [PubMed] [Google Scholar]

Macroautophagy: The key ingredient to a healthy diet? (2024)

FAQs

What are the steps of macroautophagy? ›

The initial phases of macroautophagy consist of the formation of a phagophore, which is also called an isolation membrane (vesicle nucleation step), the engulfment of cytoplasmic material—cytosol and/or organelles—by the phagophore, the elongation of the phagophore membrane, and fusion of its edges to form the ...

Why is macroautophagy important? ›

Depending on the cell type and context, macroautophagy (autophagy from here on) has different roles; in fully transformed cancer cells it functions as a tumor suppressor, as defective autophagy is associated with malignant transformation and carcinogens.

What is the difference between autophagy and macroautophagy? ›

Autophagy is a cellular process in which cytoplasmic contents are degraded within the lysosome/vacuole, and the resulting macromolecular constituents are recycled1. Macroautophagy is one type of autophagic process in which the substrates are sequestered within cytosolic double-membrane vesicles termed autophagosomes.

Is autophagy good or bad? ›

Autophagy is essential for a cell to survive and function. Autophagy: Recycles damaged cell parts into fully functioning cell parts. Gets rid of nonfunctional cell parts that take up space and slow performance.

What are the key proteins in autophagy? ›

Autophagic proteins involved in autophagosome formation assemble into several functional complexes: (1) UNC51-like kinase 1 (ULK1) complex; (2) class III phosphoinositide 3-kinase (PI3K) complex; (3) ATG9 recycling system; and (4) ubiquitin-like conjugation systems including ATG12–ATG5–ATG16 and microtubule-associated ...

What are the key regulators of autophagy? ›

In the regulation of intracellular autophagic signaling, MTOR, a master regulator of autophagy, predominantly suppresses autophagy. In addition, AMPK, inositol, calcium, and stress response signaling can regulate autophagy (partially) in an MTOR-independent manner.

What are the 5 stages of autophagy? ›

The process of autophagy is divided into five distinct stages: initiation, nucleation, expansion and elongation, closure and fusion, and cargo degradation. Each stage has potential clinical targets.

What is the diet for autophagy? ›

“Fasting is [the] most effective way to trigger autophagy,” explains Petre. “Ketosis, a diet high in fat and low in carbs brings the same benefits of fasting without fasting, like a shortcut to induce the same beneficial metabolic changes,” she adds.

What does macroautophagy degrade? ›

Under normal growing conditions, macroautophagy aids in cellular maintenance by specifically degrading damaged or superfluous organelles (154).

Is 16 hours fasting enough for autophagy? ›

While studies are ongoing, research suggests you'd have to fast for a minimum of 12 to 16 hours to induce autophagy. It's important to understand that fasting can be dangerous with certain medical conditions, so always seek medical advice before trying it out.

How to trigger autophagy? ›

These include fasting, exercising, or restricting your calorie intake ( 3 ). Following a low carb, high fat ketogenic diet can also stimulate autophagy by promoting ketosis, a metabolic state in which your body burns fat for energy instead of sugar ( 4 ).

Can autophagy heal kidneys? ›

Autophagy is activated during AKI as an adaptive response in renal tubule cells. Activated autophagy helps the cells remove damaged organelles and toxic protein aggregates to maintain cellular homeostasis, viability and function. Therapeutically, enhancing the activity of autophagy may protect kidneys against AKI.

Does autophagy age you? ›

The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others.

Does water stop autophagy? ›

Studies have shown that water fasting could have health benefits. For example, it may lower the risk of some chronic diseases and stimulate autophagy, a process that helps your body break down and recycle old parts of your cells.

How long should a person stay in autophagy? ›

Depending on the individual's metabolism, significant autophagy may take two to four days of fasting in humans. Autophagy is believed to begin when glucose and insulin levels drop considerably. Animal studies have shown evidence of autophagy after 24 hours of fasting, which starts peaking at around 48 hours of fasting.

What is the autophagy pathway? ›

Macroautophagy/autophagy is an essential, conserved self-eating process that cells perform to allow degradation of intracellular components, including soluble proteins, aggregated proteins, organelles, macromolecular complexes, and foreign bodies.

What is the mechanism of macroautophagy? ›

In contrast, macroautophagy involves the sequestration of parts of the cytoplasm, including large protein complexes and organelles, within a double-membrane cytosolic vesicle that ultimately fuses with the lysosome/vacuole to allow the degradation of its cargo [2].

What are the principles of autophagy? ›

Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. In yeast, autophagy is activated in response to changes in the extracellular milieu.

Top Articles
Latest Posts
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 6300

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.